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Abstract

Despite recent advancements in surface reconstruction,
Level of Detail (LoD) 3 building reconstruction remains
an unresolved challenge. The main issue pertains to the
object-oriented modelling paradigm, which requires geo-
referencing, watertight geometry, facade semantics, and
low-poly representation – Contrasting unstructured mesh-
oriented models. In Texture2LoD3, we introduce a novel
method leveraging the ubiquity of 3D building model pri-
ors and panoramic street-level images, enabling the re-
construction of LoD3 building models. We observe that
prior low-detail building models can serve as valid pla-
nar targets for ortho-rectifying street-level panoramic im-
ages. Moreover, deploying segmentation on accurately tex-
tured low-level building surfaces supports maintaining es-
sential georeferencing, watertight geometry, and low-poly
representation for LoD3 reconstruction. In the absence
of LoD3 validation data, we additionally introduce the
ReLoD3 dataset, on which we experimentally demonstrate
that our method leads to improved facade segmentation ac-
curacy by 11% and can replace costly manual projections.
We believe that Texture2LoD3 can scale the adoption of
LoD3 models, opening applications in estimating building
solar potential or enhancing autonomous driving simula-
tions. The project website, code, and data are available
here: https://wenzhaotang.github.io/Texture2LoD3/.

1. Introduction

Photogrammetry and computer vision researchers have al-
ways seen detailed semantic 3D building reconstruction as
a fundamental challenge [17, 50]. Recent developments
in open source and proprietary software have shown that
reconstruction using 2D building footprints and aerial ob-
servations enables country-wide reconstruction up to the

Figure 1. Texture2LoD3 proposes leveraging ubiquitous street-
level images and low-level building models for accurate ortho-
texturing (left): Enabling accurate semantic segmentation (center)
and facade-rich level of detail (LoD)3 reconstruction (right).

LoD2 displaying complex roof shapes and simplified fa-
cades [17, 46, 60]. Unlike the mesh-oriented models, the
semantic 3D building models defined by the international
CityGML standard [15] are georeferenced, watertight, and
have low-poly boundary representation (B-Rep), enabling
multiple applications [4]. Remarkably, such models remain
under-explored modality for methods development, given
their ubiquity, e.g., open data on 215 million buildings in
Switzerland, the Netherlands, the US, or Poland [60, 61].

Unlike low-detail LoD1 and LoD2, LoD3 models are
characterized by additional detailed facade representation
and remain scarcely available despite novel methods pres-
ence [21, 24, 39, 57, 59]. One of the main issues pertains to
the source data availability, assuming either accurate mo-
bile laser scanning (MLS) observations or ortho-rectified
textures, which in practice are often unavailable.

Despite worldwide availability of panoramic street-level
images such as Google Street View (GSV) or Mapillary
[23] and the growth in image-based training datasets, fa-
cade elements remain frequently unlabeled and limited to
ortho-rectified image views [29, 56, 57, 59]. Applying such
training sets to perspective and panoramic images remains
unfeasible due to drastic geometry representation changes
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in facade elements, e.g., the closer rectangular windows are
to the vanishing point, the more they resemble lines.

As we exemplify in Fig. 1, our Texture2LoD3 pro-
poses a method harnessing the potential of widely avail-
able panoramic street-view images and ubiquitous low-level
semantic 3D building models. We leverage the georefer-
encing of two modalities for their global matching while
low-poly planar representation of 3D models for the im-
age ortho-rectification target. By utilizing prior low-poly
models, we satisfy requirements of georeferencing, water-
tightness, low-poly representation, and geometrical consis-
tency for LoD3 reconstruction: Formulating it as a refine-
ment strategy [59] of low-level models to high-detail LoD3
models by reconstructing only the required facade elements,
segmented from a projected image onto a planar surface.
Our main contributions are as follows:
• We propose the effective projection of panoramic images

to ortho-rectified images by leveraging ubiquitous seman-
tic 3D building models as targets

• We improve facade semantic segmentation performance
on 3D surfaces by accurate texturing: Enabling accurate
LoD3 facade element reconstruction

• We introduce the first-of-its-kind open texturing bench-
mark dataset, ReLoD3, comprising synchronised LoD3
models, panoramic images, and manually textured low-
level LoD2 building models

2. Related Works
3D Facade Segmentation The recent years have witnessed
a surge in semantic 3D facade segmentation methods both
on point clouds, images, and in combination with prior 3D
models. Since the current research suggests that street-level
and drone-based point clouds accurately depict 3D facade
geometry, multiple point-cloud-based methods have been
proposed [14, 35, 40, 52]. Recent benchmark data results,
such as ZAHA [62] and ArCH [35], imply that the challenge
is still unsolved and remains challenging due to under-
represented classes, sparsity of objects in point clouds, and
frequently indistinct 3D geometry features [45, 49].

Other approaches rely only on image-based input, cap-
italizing on rich optical features and 2D image grid repre-
sentation. Various methods have been proposed to tackle
this challenge, such as non-learning [37, 50], gramma-based
[5, 36], and recently deep learning approaches [7, 20, 24,
32, 57]. Owing to the ubiquity of image training data,
even the standard Mask-RCNN [19] proves relatively ef-
ficient after the subsequent fine-tunning on the facade im-
age databases [59]. However, these methods perform well
only under the assumption that an image is ortho-rectified;
it makes generalization challenging since facade elements
are prone to the dire geometry change under perspective
and barrel distortions. This applies to classical methods
as well which explicitly concentrate on line and point ex-

traction for matching images with models for texturing
[22, 25, 26, 51]. In practice, ortho-rectified images are rare
and limited just to a few benchmarks or manual projections,
yielding unsatisfactory results on non-rectified real-world
data [6, 11, 27, 29, 44, 56].

An alternative approach is to exploit information from
3D models, optical images, and laser scanning point clouds
to achieve accurate 3D facade segmentation [55, 59]. For
example, Scan2LoD3 [59] introduces a method where
uncertainty-aware ray analysis of laser points with 3D mod-
els yield conflict maps indicating openings, which can serve
as evidence for late-fusion of 3D segmented point clouds
and 2D segmented optical images. However, the availability
of such multi-modal setups is currently limited and assumes
their heterogeneous accurate projection onto the model sur-
face.
LoD3 Building Reconstruction Semantic 3D building re-
construction is a long-standing challenge in photogramme-
try and computer vision [50]. For years, the international
standard CityGML [3, 16] has been defining the formal de-
scription of such models, where LoD1 stands for simple
cuboid models, LoD2 for polyhedral models with detailed
roof shape, and LoD3 for detailed roof shapes comple-
mented with a detailed facade representation. The primary
difference to the standard mesh models is that semantic 3D
building models are georeferenced; comprise object-level
geometry and semantics; have a hierarchical data model that
also describes the object-to-object relationship; display wa-
tertight and low-poly geometry facilitating volumetric space
interpretation by integrating externally observable surfaces
within a boundary representation (B-Rep) [16, 28, 60].

Despite recent advancements in LoD3 building recon-
struction, LoD3 models remain scarce [18, 20, 38, 39, 47,
57, 59]. One of the main remaining issues is the robust-
ness of methods when deployed at scale. Most of the meth-
ods assume that a specialized method of acquisition is re-
quired: It sets a high requirement for the practical meth-
ods’ deployment, as these methods assume targeted accu-
rate co-registration of multiple subsequent images and com-
plete object coverage without adjacent buildings, e.g., sin-
gle house acquired by a 360-degree drone flight [24, 39].
Alternatively, the above-mentioned Scan2LoD3 [59] can
mitigate such issues by introducing additional conflict maps
of the ray-to-prior-model analysis.

3. Method
As shown in Fig. 2, our Texture2LoD3 method commences
with the image-to-object matching of widely-available geo-
referenced panoramic images and ubiquitous low-level se-
mantic 3D building models (Sec. 3.1). This process is
followed by 3D model B-Rep surface simplification (top-
branch), while panoramic images are rectified (Sec. 3.2) and
building facades are segmented (bottom-branch) (Sec. 3.3).
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Figure 2. Overview of the proposed Texture2LoD3 method: The method commences with global matching of georeferenced panorama
images and low-level 3D models. In the top branch, 3D target facade surfaces are simplified, while in the bottom branch panoramic images
are rectified and building facade instances are extracted. Subsequently, fine object-to-object matching and projection is performed to the
simplified 3D model surface. Quadrilateral fitting and image-to-plane ray casting ensure accurate ortho-rectified 3D texture, enabling
accurate facade elements segmentation and LoD3 reconstruction.

The fine quadrilateral fitting of the facade instance shall en-
sure complete facade depiction (Sec. 3.4), followed by ray-
casting-based projection onto the simplified 3D model pla-
nar surface (Sec. 3.5); Enabling accurate facade elements
segmentation and LoD3 reconstruction.

3.1. Matching Panoramic Image to 3D Model

In this work, “matching” refers to aligning geo-referenced
ground-level panoramic images with corresponding 3D
building models. Specifically, the goal is to associate the
facade observed in a ground-level image with its counter-
part in the 3D model, thus establishing a coherent mapping
between image pixels and 3D geometry.
Camera Parameters We assume that each panoramic im-
age is accompanied by a set of camera parameters that are
essential for the matching process. In particular, the cam-
era parameters include: a) Position: The geographic coor-
dinates (latitude and longitude) of the camera; b) Heading:
The azimuth angle indicating the direction the camera faces,
measured in degrees clockwise from North; c) Field-of-view
(FOV): The angular extent of the scene captured by the cam-
era in degrees; d) Generic parameters: Any extra available
parameters, e.g., the camera’s height above ground level.

Due to the imprecision of geo-referenced data, the avail-
able 2D sensor positions and 3D model vertices in the B-
Rep only provide a coarse association. Moreover, seman-
tic 3D building models often subdivide a single facade into
multiple small triangular faces—a phenomenon we refer to
as facade subdivision. This subdivision complicates texture
mapping because it prevents a straightforward correspon-

dence between image features and continuous facade re-
gions. To overcome these issues, we propose a unified ray-
casting-based approach that leverages camera parameters to
detect facade regions and simplify the 3D model, thereby
facilitating a robust matching between the panoramic image
and the 3D building model.

3D B-Rep Model and Camera Integration We first ex-
tract the camera parameters (position, heading, FOV, and
the manually set camera height) from the geo-referenced
panoramic images and project them into the global build-
ing coordinate reference system. In our framework, the
3D building model is represented as a boundary representa-
tion (B-Rep), i.e., a collection of vertices, edges, and faces
that define the surfaces of the building; We assume the fol-
lowing information is available: a) Ground surface defini-
tion: The model explicitly delineates the building’s base,
from which the building height can be extracted, e.g., via
the minimum and maximum Z-coordinates adhering to the
CityGML GroundSurface definition [16]; b) Altitude and
orientation: The model’s global orientation (altitude) is in-
herently defined within a global coordinate reference sys-
tem, ensuring that facade orientations are consistent; c)
Height: The vertical extent of the building is provided or
can be computed from the B-Rep, enabling precise place-
ment of the camera.

Ray-Casting-Based Facade Detection For each camera,
multiple rays with varying horizontal and vertical angles
are cast against the 3D model’s triangular mesh. The ray-
casting process records the intersected faces and their spa-
tial distribution. We then select the camera view that yields



Figure 3. (Left) Original surface with multiple triangular faces.
(Right) Fitted quadrilateral representation with re-triangulation
along the diagonal (dashed purple), preserving facade shape.

the highest number of valid intersections and best aligns the
camera position with the centroid of the hit points. Note that
here, ray-casting is used to robustly detect the facade region
by identifying the contiguous set of faces corresponding to
the building’s facade, even in the presence of fragmentation.
This detection step is crucial for the subsequent matching
process, as it determines which part of the 3D model corre-
sponds to the observed image.
Local Plane Fitting and 3D B-Rep Model Simplification
The set of intersected triangular faces from the optimal view
is aggregated and fitted to a local plane via principal com-
ponent analysis (PCA), which yields a centroid c and two
in-plane basis vectors u and v. Each vertex p on the de-
tected facade is then projected onto this plane:

x = ⟨p− c,u⟩, y = ⟨p− c,v⟩ (1)

From the 2D projections, a minimum area bounding
rectangle is computed, resulting in four corner points
{(xi, yi)}4i=1. These corners are mapped back into 3D
space:

qi = c+ xi u+ yi v, i = 1, . . . , 4 (2)

The quadrilateral defined by {qi} is subsequently re-
triangulated into two triangles, thereby replacing the frag-
mented original representation with a simplified mesh that
preserves critical geometric features while reducing compu-
tational complexity (Fig. 3).

It is worth noting that the literature offers a wide variety
of methods for geometric simplification and for converting
between triangular and quadrilateral representations, such
as those available in the CGAL library [10]. In contrast, our
approach relies solely on the consistency of plane normals
computed via PCA, which is robust under the assumption
that the facade region is locally planar—a reasonable as-
sumption for most urban building facades and semantic 3D
city models that shall adhere to this assumption.
FOV Calculation Based on Building Geometry To com-
pute the effective camera field-of-view (FOV) for each
building, we define a buffer region around each camera ob-
servation point to identify nearby structures. The exterior
boundaries of the building are sampled to determine the an-
gular directions (bearings) from the camera. By evaluating

occlusion effects—ensuring that each building vertex is vis-
ible without interference from adjacent structures—we de-
termine the effective angular extent of the building facade.
These FOV metrics aim to exclude occlusion-induced noise
and the target building’s facade view.

3.2. Panoramic Image Auto-rectification
We utilize an automatic rectification approach for
panoramic images consisting of three stages inspired by
Zhu et al. [67]: a) tile extraction and local rectification;
b) consensus estimation of zenith and horizontal vanishing
points; and c) global re-projection. This part of the method
aims to effectively rectify panoramic images by combin-
ing local tile analysis, a robust SVD-based consensus, and
global re-projection. It shall provide a consistent geometric
basis for subsequent facade segmentation and texturing.
Tile Extraction and Local Rectification We partition the
input panorama image into multiple overlapping tiles via a
ray-casting strategy. Local features and edges within each
tile yield estimates of the horizon line h, horizontal vanish-
ing points {vi}, and a local zenith vector z. Importantly,
the local zenith vector z is computed independently from
the horizontal vanishing points. Specifically, while both are
derived from the same set of local edge features, the zenith
vector is estimated via a robust SVD-based process on the
normalized edge directions, which directly captures the pre-
dominant vertical direction in each tile. These local param-
eters serve as geometric cues for subsequent global align-
ment. Although the image is already rectified, semantic
information does not drive the rectification process. Con-
sequently, when a building’s facade is particularly wide, in-
dividual tiles may only capture a portion of the facade (even
if that portion is rectified). In such cases, subsequent image
tile stitching (Section 3.2) is necessary to produce a more
complete representation of the facade.
Consensus Estimation We aggregate all normalized zenith
vectors {zi} and compute a consensus zenith z∗ via SVD:

z∗ = SVD({zi}) (3)

From z∗ = (zx, zy, zz)
⊤, the pitch ϕ and roll θ angles are:

ϕ = arctan
(zz
zy

)
, θ = − arctan

( zx

sgn(zy)
√
z2y + z2z

)
(4)

We define standard rotation matricesRroll(θ),Rpitch(ϕ) (and
optionally Rheading(ψ)) to align the vanishing points. A his-
togram of horizontal angles can further refine these esti-
mates if necessary.
Global Re-projection With the consensus rotation deter-
mined, we re-project the entire panorama image into a rec-
tified view. For a pixel with spherical coordinates (θ, ϕ), its
3D direction vector v(θ, ϕ) is rotated back byRroll(−θ) and



Rpitch(−ϕ). The result is then mapped to image coordinates
via an inverse equirectangular projection:

x =
(

θ′

360◦ + 1
2

)
W, y =

(
ϕ′

180◦ + 1
2

)
H (5)

Image Tile Stitching In cases where a single rectified tile
cannot capture the entire building facade, we stitch multiple
overlapping tiles into one image. We detect SIFT keypoints
in each tile, match them across overlaps, and estimate a ro-
bust homography via RANSAC [31]. The source tile is then
warped accordingly, and a smooth blending operation miti-
gates seam artifacts.

3.3. Building Facade Segmentation
To accurately isolate and extract building facades from
complex urban scenes, we adopt the pipeline illustrated
in Fig. 4. Our approach integrates an automatic instance-
level segmentation (Semantic-SAM [30]) with semantic fil-
tering via CLIP [41], thus allowing building facades to
be selectively retained while discarding irrelevant objects
(e.g., cars, trees, people). We choose Semantic-SAM ow-
ing to its outstanding performance in instance segmentation
tasks [30]. Given that many of our input images feature
multiple adjacent building facades, Semantic-SAM’s robust
segmentation capability is essential for reliably distinguish-
ing individual facade instances.
Instance Generation via Semantic-SAM Given a rectified
panoramic image I , we employ the Semantic-SAM auto-
matic mask generator to produce a set of unlabeled instance
masks {Mi}. These masks aim to cover all salient regions
in the scene, ranging from building surfaces to smaller ob-
jects like cars or trees. Although the mask generator pro-
vides instance-level segmentation, no semantic labels are
assigned.
CLIP-Based Label Filtering To determine which instance
masks correspond to building facades, we process each
masked image region using a CLIP [41] encoder (ViT-
L/14). Specifically, we compute an image embedding and
compare it via cosine similarity to text embeddings de-
rived from a predefined set of text prompts (typically 2–3
prompts, e.g., ”building facade”, ”vehicle”, and ”pedes-
trian on the street”). An instance is retained if its highest-
confidence label is ”building facade” and its similarity
score exceeds a chosen threshold; otherwise, it is discarded.
Additionally, masks identified as ”building eave” are sub-
tracted to ensure that only the primary vertical surfaces of
the building remain. This process also filters out instances
classified as ”vehicle” or ”pedestrian on the street” to ex-
clude dynamic and non-architectural elements from further
processing.
Mask Combination and Noise Removal As multiple fa-
cade masks may be produced for a single building or por-
tions thereof, we unify them via logical OR: Mfacade =

Sem
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Figure 4. Semantic-SAM generates unlabeled instance
masks, which are then passed to a CLIP encoder for seman-
tic filtering. We retain masks classified as building facade.

Figure 5. Building facade after filtering out extraneous parts, e.g.,
eave masks, and a schematic view quadrilateral fitting extracting
the four corner points based on the refined mask.

∨
i∈I Mi, where each Mi is ”building facade”. Likewise,

all eave masks are aggregated via logical OR and then sub-
tracted from Mfacade. We further remove small connected
components whose area is below a minimum threshold, es-
timated by Amin, to eliminate spurious detections. Mor-
phological opening and closing are then performed using a
kernel of size k × k (with k chosen according to the image
resolution) to fill small holes and smooth the boundaries of
the combined mask.
Final Facade Extraction After noise removal, the result-
ing binary mask accurately outlines the dominant building
facades. As a final step, we align the mask size with the
original panorama image and multiply it element-wise with
the original image Imasked(x, y) = I(x, y) ×Mfacade(x, y),
yielding a facade-only color image that is preserved for sub-
sequent morphological adaptation (Sec. 3.4) and texturing
(Sec. 3.5).

3.4. Facade Mask Quadrilateral Fitting
In this step, we refine the facade segmentation mask to pro-
duce a clean, noise-free representation that accurately out-
lines the facade (Fig. 5). The process consists of three
stages: a) mask smoothing via morphological operations;
b) robust quadrilateral fitting to the facade contour; and c)
perspective rectification.
Smoothing via Morphological Operations Given an in-
put binary mask I , we first smooth the mask by applying a
Gaussian blur:

Iblur(x, y) =
∑

(u,v)∈Ω

G(u, v, σ) I(x− u, y − v), (6)



where G(u, v, σ) is a Gaussian kernel and Ω is the ker-
nel support. This smoothing reduces high-frequency noise.
Next, we perform morphological closing followed by open-
ing to fill small holes and remove spurious regions:

Iclose = (Iblur ⊕B)⊖B, Iopen = (Iclose ⊖B)⊕B, (7)

with ⊕ and ⊖ denoting dilation and erosion, respec-
tively, and B being a rectangular structuring element
of size (15 × 15). From the resulting mask, contours
are extracted and the largest contour, Cmax, is selected:
Cmax = argmaxC∈C Area(C). Its convex hull, H =
convexHull(Cmax), provides a robust boundary for the fa-
cade.
Quadrilateral Fitting To obtain a compact facade repre-
sentation, we fit a quadrilateral to the points of the convex
hull. Let P = {p1, p2, . . . , pn} denote the set of points in
H . We seek a quadrilateral Q with vertices {q1, q2, q3, q4}
that maximizes the Intersection over Union (IoU) with H ,
where:

IoU(H,Q) =
Area(H ∩Q)

Area(H ∪Q)
(8)

Perspective Rectification With the scaled quadrilateral
Qscaled, we compute a homography that maps its vertices
to the corners of a target rectangle. Assuming that the target
image has width W and height H , we define:

T = {(0, 0), (W−1, 0), (W−1, H−1), (0, H−1)} (9)

The homography matrix P satisfies:x′iy′i
1

 ∼ P

xiyi
1

 , i = 1, . . . , 4 (10)

where (xi, yi) are the coordinates of qscaled
i and (x′i, y

′
i)

are the corresponding target coordinates. This perspective
transformation matrix is computed and applied to the origi-
nal image: Iwarped = warpPerspective(Iorig, P ).

3.5. Facade Texturing by Ray-Casting
In this stage, we accurately map the texture from the
panoramic image onto the simplified facade geometry. Our
approach uses a ray-casting method that projects rays from
the camera center and computes their intersections with the
facade surface, thus determining the texture coordinates for
each sample.
Ray Generation and Direction Determination Using the
simplified facade (Sec. 3.1), we generate a 3D ray for each
sampling point on the target texture grid. Each pixel in the
panoramic image is first associated with spherical coordi-
nates (θ, ϕ), from which its 3D direction vector is computed
as:

v(θ, ϕ) =

cosϕ sin θsinϕ
cosϕ cos θ

 (11)

Subsequently, the direction is adjusted using the inverse
of the rotation matrices derived during the panoramic im-
age auto-rectification stage for pitch, roll, and heading
(Sec. 3.2). This step aligns the rays with the actual orienta-
tion of the facade.
Ray-Facade Intersection Each ray, cast from the camera
center o, is tested for intersection with the facade surface.
Since the facade is approximated as a quadrilateral (typi-
cally decomposed into two triangles), the intersection point
is calculated using the standard ray-plane intersection for-
mula:

t =
(p0 − o) · n

v · n
(12)

where p0 is an arbitrary point on the facade plane, and n is
the unit normal vector of the plane. The intersection point
is then given by p = o+ tv.

While a homography warp from rectified images could
be used for texture mapping, it assumes that the facade is
perfectly planar and that the rectification is flawless. In
practice, residual geometric distortions and local deviations
from planarity often persist. Our ray-casting method di-
rectly computes the intersection of rays with the actual 3D
facade, thereby accommodating these imperfections and en-
suring a more robust and accurate texture mapping. More-
over, a simple homography warp cannot account for non-
planarities or slight misalignments due to calibration errors,
which our ray-casting approach inherently corrects by lever-
aging the true 3D geometry.
Texture Coordinate Mapping Once the intersection point
p is determined, it is projected onto the local 2D coordinate
system of the facade using the plane parameters obtained
from PCA (centroid c and in-plane basis vectors u and v):

x = ⟨p− c,u⟩, y = ⟨p− c,v⟩ (13)

After normalization, the (x, y) coordinates correspond di-
rectly to the texture coordinates in the original panoramic
image.
Texture Sampling and Synthesis The texture coordinates
are used to sample pixel values from the panoramic im-
age, employing bilinear interpolation to ensure pixel re-
projection. These sampled values are then mapped onto the
simplified facade mesh, thereby generating a high-detail,
geometrically consistent texture.

4. Experiments
Our ReLoD3 Texture Dataset Benchmark In the ab-
sence of datasets comprising accurate LoD3 reference data
aligned with extracted opening masks, manual textures, and
street-level images, we introduce the ReLoD3 dataset. The
ReLoD3 comprises 27 unique LoD3 models modeled ac-
cording to the CityGML standard [16] including windows,
doors, and eaves modeled based on high-accuracy MLS
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Figure 6. Tested facade segmentation baselines on a selected building from the introduced ReLoD3 benchmark dataset across various
texture projection methods. Our Texture2LoD3 is less prone to distortions, hence yielding more accurate segmentation across the baselines.
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method without rectification. Shown on MaskFormer [8] on four width-different facades of the introduced ReLoD3 benchmark dataset.

Table 1. Quantitative comparison of semantic segmentation mod-
els on facade opening detection across two datasets. Performance
is measured using SSIM (↑), IoU (↑), and LPIPS (↓).

w/o surface rectification 4-point-manual Texture2LoD3 (Ours)

Methods SSIM IoU LPIPS SSIM IoU LPIPS SSIM IoU LPIPS

SF[63] 0.84 0.43 0.38 0.86 0.51 0.35 0.87 0.53 0.34
MF[8] 0.83 0.49 0.39 0.86 0.59 0.34 0.84 0.60 0.33
M2F[9] 0.84 0.45 0.37 0.85 0.48 0.35 0.86 0.48 0.36
GS2[30] 0.83 0.40 0.39 0.84 0.44 0.37 0.84 0.42 0.37

point clouds of relative accuracy 1-3 cm [1], manually 4-
point projected perspective terrestrial optical images of the
digital camera (Sony α7), and corresponding GSV Images

[13], located in Munich, Germany. This dataset is part of
the TUM2TWIN initiative [54]. We deem LoD3 open-
ing masks as ground-truth owing to their superior accu-
racy and no distortions present, unlike manually rectified
perspective images. In this experiment, we used 238 win-
dows and 38 door instances captured from various build-
ing facades. The data is available under the project page:
https://wenzhaotang.github.io/Texture2LoD3/.

4.1. Results and Discussion

3D Facade Segmentation as Texture Quality Measure
We evaluate the performance of four state-of-the-art seman-
tic segmentation approaches on the task of facade opening

https://wenzhaotang.github.io/Texture2LoD3/


detection: SegFormer [63], MaskFormer [8], Mask2Former
[9], and Grounded SAM2 [43] (Segment Anything Model
with semantic capabilities). For the supervised methods,
we leverage the pre-trained on ADE20K [65], fine-tuned on
the CMP dataset [56]; For the open-set experiments, we use
the text prompt ”window” and ”door”.

The quality of facade segmentation serves as an effec-
tive proxy for evaluating texture quality in 3D building
models. We employ three distinct metrics to comprehen-
sively assess segmentation performance: Structural Simi-
larity Index Measure (SSIM) [58], mean Intersection over
Union (mIoU), and Learned Perceptual Image Patch Simi-
larity (LPIPS) [64]. SSIM measures the perceived quality
between images and correlates with human visual percep-
tion, IoU quantifies the spatial overlap accuracy between
predicted and ground truth segments, and LPIPS captures
perceptual similarities using deep feature representations
that align with human judgments of visual similarity.

We compared three texture processing methods: unrec-
tified imagery (w/o surface rectification), manual 4-point
rectification (ReLoD3), and our automatic approach (Tex-
ture2LoD3). While unrectified imagery projection is the
standard projection procedure, manual 4-point rectification
represents the current standard in many practical workflows
and relies on manual corner selection, our Texture2LoD3
uses geometric data from LoD1/2 models for automatic
alignment. All images were captured at a consistent height
(approx. 1.7m) to reduce alignment errors. To ensure fair
segmentation comparison, we apply test-time adaptation for
mask evaluation across all methods (see supplementary ma-
terial for details).

As shown in Tab. 1, all segmentation models benefit
significantly from accurate texture rectification, with con-
sistent performance improvements visible across all met-
rics. The baseline approach without rectification achieves
the lowest scores due to perspective distortions complicat-
ing the segmentation task. The 4-point-manual method de-
livers noticeable improvements, particularly in IoU scores,
demonstrating the value of perspective correction in facade
analysis. Our Texture2LoD3 approach consistently outper-
forms the w/o surface rectification baseline across all mod-
els and metrics and can replace manual projections. Seg-
Former exhibits the most substantial gains, achieving an
SSIM of 0.87, IoU of 0.53, and LPIPS of 0.34 when com-
bined with our method. This result represents improve-
ments of 3% in SSIM and 10% in IoU compared to the un-
rectified baseline and 1-2% improvement over the manual
rectification approach.

The qualitative results in Fig. 7 and Fig. 6 visually con-
firm these quantitative findings. Fig. 7 demonstrates how
our Texture2LoD3 method produces cleaner segmentation
boundaries and more consistent element detection across
various building facades. The improvement is particularly

evident in buildings with complex architectural features and
elongated facades. Fig. 6 highlights performance differ-
ences through visual comparisons of a facade segmented
by various methods. Texture2LoD3 produces results that
align more closely with both the ground truth and geometric
model, as shown by higher mIoU scores. This demonstrates
that geometry-aware texture processing improves segmen-
tation, with Texture2LoD3 outperforming manual methods
without requiring labor-intensive intervention.

Limitations and Future Work The Texture2LoD3 method
leverages the worldwide ubiquity of both semantic 3D
models and panoramic street-view images, which shall
open worldwide availability of so-far scarce LoD3 mod-
els. Yet, caution must be exercised as our rectified im-
ages are obtained from GSV images; there still may be
some occlusions present concealing facades; the image
quality is also highly dependent on the lighting conditions
at the time the GSV images were captured. The iden-
tified hyper-parameters were consistently applied to our
ReLoD3 dataset, yet further experiments must be under-
taken to prove their computational efficiency and scalability,
e.g., in architecturally different scenes of Asia.

5. Conclusion

In this paper, we introduce Texture2LoD3, a method en-
abling LoD3 building reconstruction by accurately project-
ing widely available street-level panoramic images onto sur-
faces of low-detail semantic 3D building models. Our work
has led us to the conclusion that such a method can un-
lock worldwide availability of LoD3 models, as our au-
tomatic results outperform standard projections (by 11%
IoU) and can replace manual texture projections (positive
1% IoU difference). Crucially, we also observe the quali-
tative advantage of our method, as it is less prone to per-
spective distortions when compared to manual perspective
image projection or projecting without any surface rectifi-
cation. Moreover, by employing prior low-detail seman-
tic 3D building models as projection targets, we maintain
the essential requirements of georeferencing, watertight-
ness, and low-poly representation, extended by texture se-
mantics. Owing to the absence of datasets allowing for such
developments, we present the ReLoD3 texturing bench-
mark dataset, which will facilitate further research on LoD3
building reconstruction from images.
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6. Parameter Settings

Processing Hardware The experiments were conducted on
an OMEN HP Laptop 17 with NVIDIA® GeForce RTX™
4090 Laptop-GPU (16 GB GDDR6), Intel® Core™ i9-
Processor 13. Generation, 32 GB DDR5-5200 MHz RAM
(2x 16 GB).
B-Rep Preprocessing For facade extraction, a ray-casting
approach uses multiple rays per camera view. We integrate
camera parameters by setting the camera offset to 0.01 m
and assuming a camera height of 1.7 m above the building’s
lower bound. PCA-based local plane fitting was used for
re-triangulation of the fragmented triangular faces.
Geo-Spatial Data Extraction and FOV Computa-
tion Building footprints were extracted from CityGML
files by parsing the first posList element in the
GroundSurface. Coordinates were converted from
EPSG:25832 to EPSG:4326. For field-of-view estimation,
horizontal angles were interpolated (10 samples) between
the adjusted left and right angles, where the inward offset
was set as one-twentieth of the overall FOV (e.g., for a 60°
FOV, the offset was 3° for both sides). Five pitch samples
were also generated within a ±5◦ range around the optimal
pitch computed from wall surfaces.
Panoramic Image Auto-rectification The rectification
module uses default configuration parameters from the orig-
inal method [66]. Each panorama was partitioned into tiles
with overlapping regions in our implementation, and a con-
sensus zenith was computed via SVD. The pitch and roll an-
gles for re-projection were derived from the best-fit zenith
and further refined by histogram-based aggregation.
Building Facade Segmentation Semantic-SAM was used
to generate around 100 to 200 masks on average per street-
level image. For semantic filtering, a CLIP confidence
threshold of 0.05 was applied. Subsequent morphological
processing used a rectangular kernel from size 25 × 25 to
100 × 100 to ensure the artifacts on the contour’s bound-
ary would not influence the quadrilateral fitting; we also re-
moved connected components smaller than a certain num-
ber of pixels, which was set to 2000 on average.
Facade Mask Quadrilateral Fitting After preprocessing
the binary masks with a Gaussian blur (kernel size 25× 25)
and morphological operations, the quadrilateral fitter was
applied with the following parameters: Polygons with more
than 10 vertices were simplified using an initial epsilon of
0.1, a maximum epsilon of 0.4, and an epsilon increment of
0.02. No additional expansion margin was used. The result-
ing quadrilaterals were rectified to axis-aligned bounding
boxes for perspective transformation.

Texturing by Ray-Casting Rays were cast from the cam-
era using the 10 interpolated horizontal angles and five pitch
samples. Intersection points were projected onto the lo-
cally fitted facade plane to compute UV texture coordinates.
Texture sampling employs bilinear interpolation to ensure a
smooth mapping onto the simplified mesh.
Facade Elements Semantic Segmentation Parameters
We utilized the Mask2Former model with a Swin-
Large backbone, initializing from weights pre-trained on
ADE20K. We implemented training procedures for both
models with consistent hyperparameters: Batch size of four,
AdamW optimizer with a learning rate of 5e-5, and weight
decay of 1e-4. Models were trained for 20 epochs with early
stopping based on validation loss. Data augmentation in-
cluded random horizontal flipping and brightness/contrast
adjustments to improve generalization. Evaluation met-
rics included mean Intersection over Union (mIoU) and
per-class IoU. Visualization of segmentation results along-
side ground truth masks provides qualitative insight into
model performance, particularly for challenging cases such
as closely spaced windows or irregular architectural ele-
ments. Our experimental setup ensured fair comparison
across all models by maintaining consistent image resolu-
tion, data splits, and evaluation protocols.

7. Further Details on the Selected Baseline Se-
mantic Segmentation Methods

We evaluated the performance of four state-of-the-art se-
mantic segmentation approaches on the task of facade
opening detection: SegFormer [63], MaskFormer [8],
Mask2Former [9], and Grounded SAM2 [43] (Segment
Anything Model with semantic capabilities). Each model
represents a different architectural paradigm in the evo-
lution of transformer-based segmentation methods. For
the close-set supervised methods, SegFormer [63] com-
bines the hierarchical structure of CNNs with the global
modeling capabilities of transformers, utilizing a hierarchi-
cal transformer encoder and a lightweight MLP decoder.
MaskFormer [8] approaches semantic segmentation as a
mask classification problem rather than per-pixel classifi-
cation. It generates a set of binary masks with associated
class predictions, combining the strengths of both seman-
tic and instance segmentation paradigms. Mask2Former
[9] advances instance and semantic segmentation through
its masked attention mechanism and transformer decoder
architecture. For the supervised methods, we leveraged
the pre-trained on ADE20K [65], fine-tuned on the CMP
dataset [56]. Grounded SAM2 [42] extends the capabilities



of the Segment Anything Model by incorporating seman-
tic grounding, enabling it to perform semantic segmenta-
tion with prompt guidance. For our experiments, we used
the text prompt ”window” and ”door”.

8. Geo-Spatial Data Extraction and FOV Com-
putation

To complement the model preprocessing, we incorporated
a geospatial analysis pipeline that served two purposes: (i)
extraction of building footprints in a GIS-friendly format
and (ii) computation of the camera’s field-of-view (FOV)
for each building.
GeoJSON Conversion from CityGML.
Building models stored in CityGML files were parsed to
extract the GroundSurface coordinates. The extracted
3D coordinates (typically in meters) were converted into 2D
polygons by retaining the (x,y) components. A coordinate
transformation (e.g., from EPSG:25832 to EPSG:4326) was
then applied to generate GeoJSON-compliant building foot-
prints. This conversion facilitated integration with external
GIS tools and provides a reliable spatial reference for sub-
sequent FOV analysis.

9. Generation of Cropped Perspective Images
with Building ID Labeling

After determining each panorama’s field-of-view (FOV) as
described in Sec. 8, we further generate cropped perspective
images of the building facades and label them with the cor-
responding building IDs. The overall pipeline is illustrated
on the left side of Figure 8, where each cropped perspec-
tive image is annotated with an ID matching the building
footprint in the CityGML data.

Overview of the Pipeline
1. Panorama Cropping Based on FOV For each

panorama, the relevant horizontal span is identified by
computing the left and right boundaries of the view. The
panorama is then cropped accordingly to focus on the
portion containing the target building facade.

2. Building Region Detection Detect facade bounding
boxes within the cropped panorama using Grounding
DINO [33], retaining only the highest-confidence box
covering the image center.

3. Perspective Transformation Using the bounding box
coordinates, a perspective transformation is applied to
extract and rectify the facade. This step accounts for
the camera’s heading and pitch, generating a front-to-
parallel view of the building surface.

4. Building ID Labeling The resulting perspective im-
age is saved with a filename or metadata embedding
the building ID. This ID is typically derived from the
CityGML data or an external GIS database, ensuring

each cropped image can be uniquely matched to the cor-
responding building footprint.
By following this pipeline, we obtain cropped,

perspective-corrected facade images automatically labeled
with building IDs. These labeled images are then used to
transfer IDs to unlabeled rectified image tiles via feature-
based matching (right side of Fig. 8). Section 10 provides
full details of this ID association process.

10. Building ID Association
As illustrated in Fig. 8, our objective is to automatically
associate labeled building images obtained from CityGML
data (which contains building footprints) with unlabeled
rectified image tiles obtained through a generic panorama
rectification process. This step enables us to assign build-
ing IDs to the previously unlabelled image tiles. The pro-
cess consists of the following steps:
1. Data Preparation and Grouping We begin by extract-

ing unique building IDs from the object detection and
CityGML’s provided footprints and obtaining labeled
building images through projection or rendering pro-
cesses (left side of Fig. 8). Simultaneously, panorama
images are rectified and split into unlabeled tiles that pri-
marily contain building facades and outlines (right side
of Fig. 8).

2. Feature Extraction and Matching To match images of
the same building from different perspectives, we em-
ploy the SIFT algorithm for keypoint detection and de-
scriptor extraction [34]. We further utilize BFMatcher,
KNN, and Lowe’s Ratio Test to perform precise feature
matching. A threshold on the number of inlier matches
is applied to filter out false correspondences.

3. Building ID Association If a labeled image and an un-
labeled rectified tile pass the feature matching threshold
(e.g., sufficient inlier matches), we associate the building
ID from the labeled image with the rectified tile. This
process allows automatic annotation of the previously
unlabeled tiles.
By following this approach, the building images with

known IDs (examples shown on the left in Fig. 8) can be
linked with rectified unlabeled facade tiles (examples on the
right in Fig. 8), enabling automatic ID assignment. Experi-
mental results demonstrate that this method achieves robust
and accurate multi-view building matching.

11. Further Details on the ReLoD3 Texture
Dataset Benchmark Creation

Extraction of Ground-Truth Openings. We extracted
precise opening masks directly from 3D building models in
the CityGML format to establish reliable ground truth for
evaluating semantic segmentation models on facade open-
ings. Our approach leveraged the explicit geometry infor-
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Figure 8. Pipeline of building ID association. The left side illus-
trates labeled building images obtained from CityGML data, while
the right side presents rectified unlabelled facade tiles. The asso-
ciation is performed using feature matching (BFMatcher + KNN
+ Lowe’s Ratio Test) to automatically establish correspondences
and assign IDs.

mation available in LoD3 building models, where archi-
tectural elements such as doors and windows are explic-
itly modeled. The extraction process started by identify-
ing wall surfaces (bldg:WallSurface) in the CityGML
file and their associated opening elements. For each wall,
we extracted the 3D coordinates of the facade polygon and
all opening polygons. These 3D points were then pro-
jected onto a 2D plane using Principal Component Anal-
ysis (PCA) to obtain the facade’s principal plane. After
projection, we converted the 2D points to Shapely [12]
polygons for geometric operations. To address potential
topology issues in closely positioned openings (e.g., adja-
cent windows), we implemented a proximity-based group-
ing algorithm that merged openings within a specified dis-
tance threshold (0.1 meters). The facade polygon and open-
ing polygons were combined through boolean operations,
where openings were subtracted from the facade to cre-
ate a comprehensive representation of the wall structure.
More details are presented under the project page: [URL
anonymized for the submission].
Automatic Download of the Street-View Images. To ef-
ficiently acquire street-view images corresponding to build-
ing facades, we have designed an automated download pro-
cess. This process leverages the implementation of [48].
The workflow is as follows:

1. Sampling Point Generation Starting from the prede-
fined start and end coordinates, we use linear interpo-
lation to generate multiple sampling points along the
line connecting these coordinates. These points cover
the area around the building, ensuring that the collected
panorama images contain the relevant building facades.

2. Panorama Query and Download We query for nearby
panorama images for each sampling point. The unique
panorama ID is checked against a set of already down-
loaded IDs to avoid duplicate downloads.

3. Metadata Recording During the download process, the
script collects metadata for each panorama, including
panorama ID, latitude, longitude, heading (in both ra-
dians and degrees), capture date, and location; Then, it
stores it in a CSV file. This metadata facilitates later as-
sociation with the CityGML data and further analysis.

Figure 9. Schematic illustration of building footprint (black),
sampling points (red), and the buffer area (gray dashed circles).
The buffer defines a maximum distance from each sampling point
within which building facades can be captured or considered visi-
ble. This ensures coverage of the building’s facade from multiple
vantage points and avoids unnecessary distant panoramas.

As illustrated in Fig. 9, the buffer is a circular region
around each sampling point (with a user-defined radius,
e.g., 50 meters). Only those building surfaces (or facade el-
ements) intersecting this buffer are considered relevant for
capturing street-view panoramas. This automated workflow
ensures high spatial consistency between the street-view
images and the building data while significantly improv-
ing the efficiency of data collection, thereby providing a
robust foundation for subsequent facade texturing and anal-
ysis tasks.
Manual 4-point Projection of Perspective Images The
manually projected perspective terrestrial optical images of
the digital camera (Sony α7) were acquired specifically for
validating automatic texturing purposes. The campaign was
designed to capture the building model facades with a min-
imum number of photographs per triangle in the existing
LoD2 building models to ensure texture consistency with-
out any additional image stitching.

The 4-point projection refers to the texturing implemen-
tation of the proprietary SketchUp Pro [53] software with
the CityEditor [2] plugin. While the default SketchUp
Pro allows for the manual identification of four image-to-
model projection points, the CityEditor allows the load-
ing of CityGML building models into the SketchUp soft-
ware. Additionally, LoD3 ground-truth models were loaded
to guide the manual projection process. Nevertheless, ow-
ing to still persistent distortions, the deviations between the
ground-truth LoD3 and manual projection exist. As such,
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Figure 10. An illustration of our raycasting-based texturing setup.
The camera (e.g., mounted on a vehicle at 1.7 m height) casts mul-
tiple rays toward the building’s facade, which extends from the
lower bound to the upper bound obtained from the GML data. We
sample horizontal angles between the left and right viewing direc-
tions and interpolate a small range of pitch angles to capture the
relevant parts of the facade.

the distortion-free and cm-accurate LoD3 masks shall be
treated as the ground truth.

12. Texturing after triangulation

We first employ our wireframe preprocessing pipeline
(Sec. 3.1) to enable robust texturing of building facades to
convert highly subdivided B-Reps into minimal quadrilat-
eral faces. After this simplification step, we perform ray
casting from known camera poses to identify which faces
are visible from each viewpoint. Figure 10 illustrates how
the camera, positioned at 1.7 m above the ground, casts rays
spanning a specified field of view. The building facade’s
lower and upper vertical bounds are derived from CityGML
data, ensuring that our texturing pipeline only samples the
relevant portions of the geometry. For each B-Rep:

1. We compute the camera origin and direction based on
geographic coordinates and a small offset from the fa-
cade.

2. We cast multiple rays spanning the horizontal viewing
angles (from left to right and a range of pitch angles
around the facade’s center.

3. We collect all intersected faces and compute appropri-
ate UV coordinates for texturing. Faces whose normals
point inwards are automatically flipped to ensure the tex-
ture is placed on the exterior surface.

Finally, once all relevant faces are identified, we project
the corresponding panoramic images onto these faces using
a planar mapping approach (Eq. (13)). This step ensures
that the final textured facade remains visually coherent and
avoids the distortions that can arise when projecting onto
densely triangulated B-Reps. The resulting textured model
forms the basis for subsequent facade analysis and segmen-
tation (Sec. 3.3).

(a) Coarse segmentation (10 masks) (b) Fine-grained segmentation (127
masks)

Figure 11. Comparison of segmentation results using different
numbers of retained candidate masks. A small number of masks
(left) leads to fewer, larger segments capturing the main facade re-
gion. In contrast, a larger number of masks (right) produces more
detailed but also more fragmented subregions.

13. Building Facade Segmentation: Influence
of Candidate Masks

This step aims to detect and isolate the main building fa-
cade from the textured geometry. Our approach employs a
semantic segmentation pipeline built upon Semantic-SAM,
which automatically generates a set of candidate masks
for each panoramic or perspective image. We then fil-
ter these masks to retain only those corresponding to the
”building facade” class, discarding irrelevant classes such
as sky, road, or cars. Small floating artifacts are removed via
connected-component analysis, and we apply morphologi-
cal smoothing to obtain a clean, consolidated facade mask
suitable for further processing.

Figure 11 demonstrates how adjusting the quantity of
retained candidate masks affects the final segmentation. In
Fig. 11(a), retaining only 10 masks results in coarser seg-
mentation with fewer, larger regions that effectively capture
the overall facade shape. Such coarse segmentation is of-
ten advantageous when the primary goal is to isolate the fa-
cade with minimal clutter. Conversely, Fig. 11(b) shows a
more fine-grained segmentation derived from 127 candidate
masks, revealing additional details such as windows or or-
namental features. While this can benefit downstream tasks
requiring higher granularity, it also increases the likelihood
of fragmented subregions that complicate facade isolation.

14. Test-time Alignment for Mask Evaluation

Due to the inherent transformation challenges in panorama
rectification, we implement a test-time scale and shift ad-
justment procedure when evaluating predicted segmenta-
tion masks against ground truth masks. This adjustment is
necessary because the rectification process introduces un-
avoidable geometric distortions, causing the segmented ob-
jects to lose their absolute scale and position relative to
the original panoramic view. Our method employs a two-
stage optimization approach: First, conducting a coarse grid
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Figure 12. Comparison of the baselines and the Texture2LoD3 method to the Scan2LoD3 method leveraging multi-modal fusion of laser
scanning, 3D model priors, and street-level images. Such an approach clearly outperforms only image and model combinations. Yet such
a multi-modal setup is scarcely available in practical scenarios, unlike street-level images and 3D models. Figure parts copied and edited
from the original Scan2LoD3 article, where experiments were conducted on the same object, courtesy of Wysocki et al. [59].

search over a constrained parameter space (scale factors
between 0.75 and 1.2, and pixel translations within ±100
pixels), followed by a finer search within a more focused
range around the best parameters identified in the first stage.
For each candidate transformation, we compute the Inter-
section over Union (IoU) between the predicted mask and
the transformed ground truth mask, selecting the parame-
ters that maximize this metric. This alignment procedure
ensures a fair comparison between prediction and ground
truth by compensating for the scale and positional discrep-
ancies introduced during the rectification process without
altering the structural integrity of the segmentation bound-
aries.

15. Comparison to the Scan2LoD3 method

As mentioned in Related Work (Section 2), there are meth-
ods leveraging the accuracy of laser scanning, building
priors, and images to reconstruct LoD3 building models.
We acknowledge that this approach yields superior perfor-
mance to our work owing to the use of accurate laser scan-
ning modality and physics-oriented ray analysis. Due to that
fact, this comparison is out of the scope of the main publi-
cation part. Nevertheless, such a comparison is worth show-
casing modalities’ limitations, primarily since experiments
were performed partially on the same objects. Here, we se-
lected an excerpt from the Wysocki et al. [59] Scan2LoD3
method that performed the analysis on the same building
(the so-called building 23). As we show in Figure 12, the
performance on the same facade increases significantly ow-

ing to the laser scanner modality. It scored 78% while using
high accuracy scanner, and 64% when using lower grade
Velodyne scanner. This experiment shows a minimum of
5% and a maximum of 14% increase compared to the best
baseline image-based segmentation. Yet, as we elaborate in
Related Work (Section 2), such a multi-modal setup is still
scarcely available, in contrast to the ubiquitous street-level
images and 3D prior models.
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